Abstract

The safety and efficiency of lithium‐ion batteries (LIBs) suggest a promising future for this technology, particularly in the automobile industry. However, thermal runaway—wherein a LIB undergoes an uncontrollable increase in temperature that may result in smoke, fire, or explosion—represents an important and widely studied failure type. Since the electrodes of LIBs are manufactured from porous composite materials, their heterogeneity can significantly influence the effective material characteristics and microscale behaviors of LIBs during operation. Microstructure geometric and electrochemical–thermal models are typically used to investigate these impacts. Herein, a microstructure geometric model is constructed of LIB's electrodes. A virtual multiphysics model is used to simulate the overcharging thermal runaway condition. The model's accuracy is validated through real‐world experiments. The model shows greater accuracy compared to the result from a conventional homogeneous geometric model and better reflects the heterogeneous internal phenomenon. The model is applied to a variable analysis in order to investigate how the varying heterogeneity of the cathode's porosity impacts the cell during overcharging thermal runaway behavior. Our results indicate that decreasing porosity heterogeneity at the cathode may delay thermal runaway, owing to the heterogeneous impact on particle diffusion behaviors and the side reaction rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.