Abstract

New Zealand is committed to developing sustainable forest management practices as evidenced through Government involvement in international forestry agreements such as the Montreal Process, and the forestry sector's adoption of forest certification mechanisms. Despite this, there is little quantitative evidence of how plantation forestry affects site quality and long-term site productivity. To address this issue, a nationwide study of site quality was established at 31 key sites covering the range of edaphic and environmental conditions for New Zealand plantation forests. At each location, eight short-term site quality plots were planted at a very high stand density (40,000 stems ha −1) to rapidly identify key soil indicators of growth which may be useful for determining site sustainability. The plots at each site were arranged in a factorial design with the following three factors: species ( Pinus radiata D. Don and Cupressus lusitanica Mill.), fertiliser (no fertiliser and nutrients supplied in excess of crop demands) and disturbance (low and high disturbance). These plots were harvested after 4 years and data was used to (i) examine treatment and site effects on volume mean annual increment (MAI) and (ii) identify key soil properties that influence volume MAI for the two species. Volume MAI significantly ranged 7-fold across sites. For the treatments, species accounted for most of the variance in volume MAI, with values for P. radiata significantly exceeding those of C. lusitanica by 95%. Volume MAI was significantly affected by fertilisation which induced gains of 33%. Disturbance did not significantly affect volume MAI. After correction had been made for climatic variables, soil properties that were most strongly related to volume MAI for both species included C:N ratio, total phosphorus (P), and organic P. When soil properties were included in combination, the best predictive models of volume MAI formulated for P. radiata included total P and C:N ratio while the best predictive model for C. lusitanica included C:N ratio and Olsen P. Variation in species sensitivity to total P and C:N ratio is likely to be attributable to their different mycorrhizal associations. For both species, the most important soil physical property influenced by management operations was total porosity. This research suggests that total P, C:N ratio, Olsen P and total porosity should be used as indicator properties for determining sustainability of plantation grown P. radiata and C. lusitanica.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call