Abstract

Progesterone 5β-reductases (P5βRs) are involved in 5β-cardenolide formation by stereo-specific reduction of the △4,5 double bond of steroid precursors. In this study a steroid 5β-reductase was identified in Capsella rubella (CrSt5βR1) and its function in steroid 5β-reduction was validated experimentally. CrSt5βR1 is capable of enantioselectively reducing the activated CC bond of broad substrates such as steroids and enones by using NADPH as a cofactor and therefore has the potential as a biocatalyst in organic synthesis. However, for industrial purposes the cheaper NADH is the preferred cofactor. By applying rational design based on literature and complementary mutagenesis strategies, we successfully identified two key amino acid residues determining the cofactor specificity of the enzyme. The R63 K mutation enables the enzyme to convert progesterone to 5β-pregnane-3,20-dione with NADH as cofactor, whereas the wild-type CrSt5βR1 is strictly NADPH-dependent. By further introducing the R64H mutation, the double mutant R63K_R64H of CrSt5βR1 was shown to increase enzymatic activity by13.8-fold with NADH as a cofactor and to increase the NADH/NADPH conversion ratio by 10.9-fold over the R63 K single mutant. This finding was successfully applied to change the cofactor specificity and to improve activity of other members of the same enzyme family, AtP5βR and DlP5βR. CrSt5βR1 mutants are expected to have the potential for biotechnological applications in combination with the well-established NADH regeneration systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.