Abstract

BackgroundDedifferentiated liposarcoma (DDLPS) is one of the most deadly types of soft tissue sarcoma. To date, there have been few studies dedicated to elucidating the molecular mechanisms behind the disease; therefore, the molecular mechanisms behind this malignancy remain largely unknown.Materials and methodsMicroarray profiles of 46 DDLPS samples and nine normal fat controls were extracted from Gene Expression Omnibus (GEO). Quality control for these microarray profiles was performed before analysis. Hierarchical clustering and principal component analysis were used to distinguish the general differences in gene expression between DDLPS samples and the normal fat controls. Differentially expressed genes (DEGs) were identified using the Limma package in R. Next, the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were obtained using the online tool DAVID (http://david.abcc.ncifcrf.gov/). A protein–protein interaction (PPI) network was constructed using the STRING database and Cytoscape software. Furthermore, the hub genes within the PPI network were identified.ResultsAll 55 microarray profiles were confirmed to be of high quality. The gene expression pattern of DDLPS samples was significantly different from that of normal fat controls. In total, 700 DEGs were identified, and 83 enriched GO terms and three KEGG pathways were obtained. Specifically, within the DEGs of DDLPS samples, several pathways were identified as being significantly enriched, including the PPAR signaling pathway, cell cycle pathway, and pyruvate metabolism pathway. Furthermore, the dysregulated PPI network of DDLPS was constructed, and 14 hub genes were identified. Characteristic of DDLPS, the genes CDK4 and MDM2 were universally found to be up-regulated and amplified in gene copy number.ConclusionThis study used bioinformatics to comprehensively mine DDLPS microarray data in order to obtain a deeper understanding of the molecular mechanism of DDLPS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.