Abstract
Human tongue cancer (TC) is an aggressive malignancy with a very poor prognosis. There is an urgent need to elucidate the underlying molecular mechanisms involved in TC progression. mRNA expression profiles play a vital role in the exploration of cancer-related genes. Therefore, the purpose of our study was to identify the progression associated candidate genes of TC by bioinformatics analysis. Five microarray datasets of TC samples were downloaded from the Gene Expression Omnibus (GEO) database and the data of 133 TC patients were screened from The Cancer Genome Atlas (TCGA) head and neck squamous cell carcinoma (HNSC) database. The integrated analysis of five microarray datasets and the RNA sequencing data of TC samples in TCGA-HNSC was performed to obtain 1023 overlapping differentially expressed genes (DEGs) in TC and adjacent normal tissue (ANT) samples. Next, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to enrich the significant pathways of the 1023 DEGs and PI3KAkt signaling pathway (P=0.011) was selected to be the candidate pathway. A total of 23 DEGs with |log2 fold change (FC)| ≥1.0 in phosphatidylinositol 3-kinase-serine/threonine kinase (PI3K-Akt) signaling pathway were subjected to survival analysis of 125 eligible TC samples in TCGA database, indicating increased integrin-α3 gene (ITGA3) expression was significantly associated with poorer prognosis. Taken together, our study suggested ITGA3 may facilitate the development of TC via activating PI3K-Akt signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.