Abstract

Head and neck squamous cell carcinoma (HNSCC) is the major histological type of head and neck cancer and no curative treatments are currently available. Using advanced sequencing technologies, The Cancer Genome Atlas (TCGA) has produced large-scale sequencing data, which provide unprecedented opportunities to reveal molecular mechanisms of cancer. The present study analyzed the mRNA and micro (mi)RNA expression data of HNSCC and normal control tissues released by the TCGA database using a bioinformatics approach to explore underlying molecular mechanisms. The mRNA and miRNA expression data were downloaded from the TCGA database and differentially expressed genes (DEGs) and miRNAs (DEMs) between HNSCC and normal head and neck tissues were identified using TwoClassDif. Subsequently, the gene functions and pathways which are significantly altered in HNSCC were identified using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Regulatory networks among DEGs and DEMs were then constructed, and transcription factors (TFs) potentially regulating the DEGs and DEMs were determined and a TF - miRNA - gene network was established. A total of 2,594 significant DEGs (1,087 upregulated and 1,507 downregulated), and 25 DEMs (8 upregulated and 17 downregulated) were identified in HNSCC compared with normal control samples. These DEGs were significantly enriched in GOs and KEGG pathways such as mitosis, cell cycle, Wnt, JAK/STAT and TLR signaling pathway. CPBP, NF-AT1 and miR-1 were situated in the central hub of the TF - miRNA - gene network, underlining their central roles in regulatory processes specific for HNSCC. The present study enhanced the current understanding of the molecular mechanisms underlying HNSCC and may offer novel strategies for its prevention, diagnosis and treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.