Abstract

Many post-translational modifications such as oxidation, deamidation and isomerization of amino acid residues occur in lens proteins with aging. One such modification, isomerization of aspartate in lens α-crystallin, has been well studied by amino acid enantiomer analysis and LC-MS/MS. LC-MS/MS can quickly and easily identify D- and L-amino acid-containing peptides without purification of lens protein mixtures. However, this method has a weak point in that isomeric peptides of major components are detected predominantly, while those from minor proteins such as β- and γ-crystallins have not been fully determined. Therefore, the isomerization of amino acid residues in β- and γ-crystallin families has been little studied. To solve those problems and detect the isomerization of Asp residues in lens βB2-crystallin, the main component of the β-crystallin family, here we have developed steps for sample fractionation before d/l analysis based on either LC-MS/MS or amino acid derivatization to diastereoisomers followed by RP-HPLC. To capture a small amount of peptide, a multiple reaction monitoring (MRM) method based on quadrupole MS/MS (Q-MS) was applied to the water-soluble fraction of whole lens. The d/l analysis based on both LC-MS/MS and diastereoisomer formation showed the presence of multiple isomerization sites, including Asp4, Asp83, Asp92 and Asp192, in βB2-crystallin in aged lens. These isomerization sites were confirmed to exist in an age-dependent manner by Q-MS. Synthetic peptides of βB2-crystallin containing different isomers of Asp showed differential elution profiles during RP-HPLC, indicating differences in the local structure or hydrophobicity of Asp-isomer-containing peptides. These results suggest that the isomerization sites are distributed on exposed regions of βB2-crystallin and thus likely to have an impact on crystallin subunit–subunit interactions, induce abnormal crystallin aggregation, and contribute to senile cataract formation in aged lens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call