Abstract

This paper reports the degradation of 10mgL-1 Ametryn solution with different advanced oxidation processes and by ultraviolet (UV254) irradiation alone with the main objective of reducing acute toxicity and increase biodegradability. The investigated factors included Fe2+ and H2O2 concentrations. The effectiveness of the UV254 and UV254/H2O2 processes were investigated using a low-pressure mercury UV lamp (254nm). Photo-Fenton process was explored using a blacklight blue lamp (BLB, λ = 365nm). The UV254 irradiation process achieved complete degradation of Ametryn solution after 60min. The degradation time of Ametryn was greatly improved by the addition of H2O2. It is worth pointing out that a high rate of Ametryn removal was attained even at low concentrations of H2O2. The kinetic constant of the reaction between Ametryn and HO● for UV254/H2O2 was 3.53 × 108Lmol-1s-1. The complete Ametryn degradation by the Fenton and photo-Fenton processes was observed following 10min of reaction for various combinations of Fe2+ and H2O2 under investigation. Working with the highest concentration (150mgL-1 H2O2 and 10mgL-1 Fe2+), around 30 and 70% of TOC removal were reached within 120min of treatment by Fenton and photo-Fenton processes, respectively. Although it did not obtain complete mineralization, the intermediates formed in the degradation processes were hydroxylated and did not promote acute toxicity of Vibrio fischeri. Furthermore, a substantial improvement of biodegradability was obtained for all studied processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call