Abstract

In this work, a new methodology is presented for reconstruction of the impact force history using artificial neural networks (ANNs) and spectral components of sensor data recorded by piezoceramic sensors. A large set of data, required for training the ANNs, was generated by using an efficient nonlinear finite element (FE) model of a sensorised composite stiffened panel. Impact experiments were performed on a composite plate equipped with surface-mounted piezoceramic sensors to validate the numerical modelling approach. Using the FE model of the panel, data were generated for impacts that are likely to occur during the life-time of an aircraft, consisting of large mass (e.g. dropping tool) and small mass (e.g. debris) impacts at various locations, i.e. in the bay, on the foot of a stringer and over/under a stringer. Even though the panel undergoes large deformation during impact (nonlinear response), the established networks predict the impact force history and its peak with reasonable accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call