Abstract

The hub genes and signaling pathways associated with Duchenne muscular dystrophy (DMD) were predicted by bioinformatic methods to improve the therapeutic effect and quality of life of patients. Microarray data sets GSE465, GSE1004, and GSE1007 were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified by GEO2R, and function enrichment analyses were performed by DAVID. The protein-protein interaction (PPI) network was constructed and the module analysis was performed using STRING and Cytoscape. A total of 195 DEGs were identified. The enriched functions and pathways of the DEGs include extracellular exosome, focal adhesion, extracellular matrix (ECM), focal adhesion, PI3K-Akt signaling pathway, calcium signaling pathway, and ECM-receptor interaction. Fifteen hub genes were identified. DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the pathogenesis and progression of DMD, and provide candidate targets for treatment of DMD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.