Abstract
D-peptides, the mirror image of canonical L-peptides, offer numerous biological advantages that make them effective therapeutics. This article details how to use DexDesign, the newest OSPREY-based algorithm, for designing these D-peptides de novo. OSPREY physics-based models precisely mimic energy-equivariant reflection operations, enabling the generation of D-peptide scaffolds from L-peptide templates. Due to the scarcity of D-peptide:L-protein structural data, DexDesign calls a geometric hashing algorithm, Method of Accelerated Search for Tertiary Ensemble Representatives, as a subroutine to produce a synthetic structural dataset. DexDesign enables mixed-chirality designs with a new user interface and also reduces the conformation and sequence search space using three new design techniques: Minimum Flexible Set, Inverse Alanine Scanning, and K*-based Mutational Scanning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of computational biology : a journal of computational molecular cell biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.