Abstract

Tomato leaf curl palampur virus (ToLCPalV) is a bipartite begomovirus with genome organization typical of old world begomoviruses. It infects commercially important crops and weeds in the Asian subcontinent. Apart from other proteins, the DNA-A of the virus encodes AV2 and AC4 proteins of approximately 13.73 and 6.7kDa, respectively. In case of other begomoviruses, previous studies have shown the role of AV2 and AC4 proteins in virus movement, pathogenesis and suppression of gene silencing. However, the ToLCPalV proteins are significantly variable in comparison to closest relative and hence there is a need to work out their functions. In this study, we identified 9 cellular proteins of tomato that interact with AV2 and AC4 proteins, through yeast two hybrid screening. Upon sequence analysis, these interactors were identified as cysteine protease, katanin p60 ATPase-containing subunit A-like, guanine deaminase, NADH dehydrogenase (ubiquinone) iron-sulfur protein, glyceraldehyde-3-phosphate dehydrogenase B, 60S acidic ribosomal P0 protein, acyl co-A dehydrogenase IBR3, oxygen-evolving enhancer protein 1 and peroxisomal membrane protein 11D. These proteins play a vital role in protein degradation, plant defense response, microtubule severing, photosynthesis and protein synthesis. The two viral proteins, however, did not interact with each other in yeast. AV2 when fused with GFP under the control of cauliflower mosaic virus 35S promoter was localized in nucleus and cytoplasm. On the other hand, AC4-GFP fusion was localized only in cytoplasm. The outcome of present study will help to elucidate the mechanism of viral pathogenesis. Further functional characterization of identified host proteins will provide an insight into their involvement in disease development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call