Abstract

Signal processing based on hidden Markov models (HMM's) has been applied recently to the characterization of single ion channel currents as recorded with the patch clamp technique from living cells. The estimation of HMM parameters using the traditional forward-backward and Baum-Welch algorithms can be performed at signal-to-noise ratios (SNR's) that are too low for conventional analysis; however, the application of these algorithms relies on the assumption that the background noise is white. In this paper, the observed single channel current is modeled as a vector hidden Markov process. An extension of the forward-backward and Baum-Welch algorithms is described to model ion channel kinetics under conditions of colored noise like that seen in patch clamp recordings. Using simulated data, we demonstrate that the traditional algorithms result in biased estimates and that the vector HMM approach provides unbiased estimates of the parameters of the underlying hidden Markov scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.