Abstract

Identification of geo-hazard zones using pore pressure analysis in ‘MAC’ field was carried out in this research. Suite of wireline logs from four wells and RFT pressure data from two wells were utilized. Lithologic identification was done using gamma ray log. Resistivity log was used to delineate hydrocarbon and non-hydrocarbon formations. Well log correlation helps to see the lateral continuity of the sands. Pore pressure prediction was done using integrated approaches. The general lithology identified is alternation of sand and shale units. The stratigraphy is typical of Agbada Formation. Three reservoirs delineated were laterally correlated. Crossplot of Vp against density (Rho) colour coded with depth revealed that disequilibrium compaction is the main overpressure generating mechanism in the field. Prediction of overpressure by normal compaction trend was generated and plot of interval transit time against depth show that there is normal compaction from 250m to about 1700 m on MAC-01, but at a depth of about 1800m, there was abnormal pressure build up that shows the onset of overpressure. A relatively normal compaction was observed on MAC-02 until a depth of about 2100m where overpressure was suspected. The prediction of formation pore pressure using Eaton’s and Bower’s method to determine the better of the two methods to adopt for pore pressure prediction shows that the pore pressure prediction using Eaton’s method gave a better result similar to the acquired pressure in the field. Hence Eaton’s method appears to be better suited for formation pore pressure estimation in ‘MAC’ field. The validation of the pore pressure analysis results with available acquired pressure data affirmed the confidence in the interpreted results for this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.