Abstract
BackgroundPostnatal muscle growth is largely depending on the number and size of muscle fibers. The number of myofibers and to a large extent their metabolic and contractile properties, which also influence their size, are determined prenatally during the process of myogenesis. Hence identification of genes and their networks governing prenatal development of skeletal muscles will provide insight into the control of muscle growth and facilitate finding the source of its variation. So far most of the genes involved in myogenesis were identified by in vitro studies using gene targeting and transgenesis. Profiling of transcriptome changes during the myogenesis in vivo promises to obtain a more complete picture. In order to address this, we performed transcriptome profiling of prenatal skeletal muscle using differential display RT-PCR as on open system with the potential to detect novel transcripts. Seven key stages of myogenesis (days 14, 21, 35, 49, 63, 77 and 91 post conception) were studied in two breeds, Pietrain and Duroc, differing markedly in muscularity and muscle structure.ResultsEighty prominent cDNA fragments were sequenced, 43 showing stage-associated and 37 showing breed-associated differences in the expression, respectively. Out of the resulting 85 unique expressed sequence tags, EST, 52 could be assigned to known genes. The most frequent functional categories represented genes encoding myofibrillar proteins (8), genes involved in cell adhesion, cell-cell signaling and extracellular matrix synthesis/remodeling (8), genes regulating gene expression (8), and metabolism genes (8). Some of the EST that showed no identity to any known transcripts in the databases are located in introns of known genes and most likely represent novel exons (e.g. HMGA2). Expression of thirteen transcripts along with five reference genes was further analyzed by means of real-time quantitative PCR. Nine of the target transcripts showed higher than twofold differences in the expression between the two breeds (GATA3, HMGA2, NRAP, SMC6L1, SPP1, RAB6IP2, TJP1 and two EST).ConclusionThe present study revealed several genes and novel transcripts not previously associated with myogenesis and expands our knowledge of genetic factors operating during myogenesis. Genes that exhibited differences between the divergent breeds represent candidate genes for muscle growth and structure.
Highlights
Postnatal muscle growth is largely depending on the number and size of muscle fibers
Nine of the target transcripts showed higher than twofold differences in the expression between the two breeds (GATA3, HMGA2, NRAP, SMC6L1, SPP1, RAB6IP2, Tight junction protein 1 (TJP1) and two expressed sequence tags (EST))
The present study revealed several genes and novel transcripts not previously associated with myogenesis and expands our knowledge of genetic factors operating during myogenesis
Summary
Postnatal muscle growth is largely depending on the number and size of muscle fibers. The number of myofibers and to a large extent their metabolic and contractile properties, which influence their size, are determined prenatally during the process of myogenesis. Prenatal development of skeletal muscle, myogenesis, is an ideal model to study cell determination and differentiation. The ratio of primary to secondary myotubes is about 1:20 Both populations of myotubes significantly influence fiber number and muscle size. The importance of both primary and secondary myotubes for muscle growth is underscored by the lower number of primary fibers and a lower secondary to primary fiber ratio in small compared to large pig breeds [7,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.