Abstract
We use a combination of optical and electrostatic surface science techniques to measure electronically active native defects in multilayer GeCH3 and GeH, two-dimensional (2D) functionalized materials. Chemical processing techniques coupled with density functional theory enable us to identify the specific physical nature of both native point defects and synthesis-related impurities which can limit the optical and charge transport properties of these materials. Direct comparison of optical measurements with calculated electronic levels provides identification of these localized, deep level gap states and confirms partial H-passivation of dangling bonds, revealing synthesis and processing methods needed to control specific defects and optimize these 2D materials for emergent solid state-electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.