Abstract
In Medaka embryos (at the stages of blastulation to organogenesis), we found the presence of free glycan of which structure is identical with the multiantennary N-linked sugar chain of L-hyosophorin molecules which were originally present in the cortical alveoli of the unfertilized eggs in their precursor high molecular form. The free glycan-enriched fraction was separated from L-hyosophorin by chromatography on DEAE-Sephadex A-25 and Sephadex G-50 after removal of the sialic acid residues with exo-sialidase. Composition analysis, 400-MHz 1H NMR spectroscopy, and pyridylamination-hydrazinolysis-nitrous acid deamination of the free glycan showed the presence of di-N-acetylchitobiosyl structure at the reducing end, suggesting that the free glycan chain was derived from L-hyosophorin by the action of a specific peptide:N-glycosidase (PNGase). When we combine the previous finding of the hyosophorin-derived unique pentaantennary free glycan chain in the flounder embryos [A. Seko et al. (1989) J. Biol. Chem. 264, 15922-15929], it is anticipated that PNGase-catalyzed de-N-glycosylation of L-hyosophorin would be required at a certain stage of embryogenesis for L-hyosophorin to play a yet undefined functional role during early development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.