Abstract

We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm(-1), and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm(-1) for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.