Abstract

Cadmium (Cd) is one of the hazardous environmental pollutants, and it can be harmful to human health through consumption of food-plants capable of bioaccumulating Cd. Therefore, lowering cadmium accumulation in plants is highly desirable. Here, a rice cultivar 'Qisanzhan' was studied using differential display reverse transcription-polymerase chain reaction (DDRT-PCR). Fifty-six differentially expressed genes were found in the root tips of 4-leaf stage rice seedlings exposed to 4 and 12h of 50µmol/L Cd(NO3)2 in a nutrient solution using DDRT-PCR. Further validation using semi-quantitative RT-PCR showed that the expression patterns of 16 genes were consistent with those found in DDRT-PCR. These genes encode receptor-like protein kinase, pleiotropic drug resistance protein, aquaporin protein, plasma membrane ATPase, etc. The differentially genes identified here can be used to obtain a better understanding of the molecular mechanisms of Cd absorption and accumulation in plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.