Abstract

Background:Botrytis cinerea, a haploid Euascomycete fungus that infects numerous crops, has been used as a model system for studying molecular phytopathology. Botrytis cinerea adopts various modes of infection, which are mediated by a number of pathogenicity and virulence-related genes. Many of these genes have not been reported previously.Objectives:This study aimed to investigate development and pathogenicity-related genes between a novel nonpathogenic mutant and the Wild Type (WT) in B. cinerea.Materials and Methods:Digital Gene Expression (DGE) tag profiling can reveal novel genes that may be involved in development and pathogenicity of plant pathogen. A large volume of B. cinerea tag-seq was generated to identify differential expressed genes by the Illumina DGE tag profiling technology.Results:A total of 4,182,944 and 4,182,021 clean tags were obtained from the WT and a nonpathogenic mutant stain (BCt89), respectively, and 10,410 differentially expressed genes were identified. In addition, 84 genes were expressed in the WT only while 34 genes were expressed in the mutant only. A total of 664 differentially expressed genes were involved in 91 Kyoto Encyclopedia of Genes and Genome pathways, including signaling and metabolic pathways.Conclusions:Expression levels of 1,426 genes were significantly up-regulated in the mutant compared to WT. Furthermore, 301 genes were down-regulated with False Discovery Rates (FDR) of < 0.001 and absolute value of log2 Ratio of ≥ 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call