Abstract

This study aimed to establish a rapid and accurate method for identification of raw and vinegar-processed rhizomes of Curcuma kwangsiensis, in order to predict the content of curcumin compounds for scientific evaluation. A complete set of bionics recognition mode was adopted. The digital odor signal of raw and vinegar-processed rhizomes of Curcuma kwangsiensis were obtained by e-nose, and analyzed by back propagation(BP) neural network algorithm, with the accuracy, the sensitivity and specificity in discriminant model, correlation coefficient as well as the mean square error in regression model as the evaluation indexes. The experimental results showed that the three indexes of the e-nose signal discrimination model established by the neural network algorithm were 100% in training set, correction set and prediction set, which were obviously better than the traditional decision tree, naive bayes, support vector machine, K nearest neighbor and boost classification, and could accurately differentiate the raw and vinegar products. Correlation coefficient and mean square error of the regression model in prediction set were 0.974 8 and 0.117 5 respectively, and could well predict curcumin compounds content in Curcuma kwangsiensis, and demonstrate the superiority of the simulation biometrics model in the analysis of traditional Chinese medicine. By BP neural network algorithm, e-nose odor fingerprint could quickly, conveniently and accurately realize the discrimination and regression, which suggested that more bionics information acquisition and identification patterns could be combined in the field of traditional Chinese medicine, so as to provide ideas and methods for the rapid evaluation and stan-dardization of the quality of traditional Chinese medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.