Abstract

Plant species that accumulate high levels of metals in proportion to the metal content in the soil are of considerable interest in biogeochemical and biogeobotanical prospecting. This study was aimed at investigating copper and nickel accumulation in the plants Helichrysum candolleanum and Blepharis diversispina, to assess their potential use as mineral indicators in biogeochemical prospecting. Soils and plants were collected from copper–nickel mineralised areas in Botswana. Analyses of the soils and the respective plant parts (roots, stem, leaves and flowers) were carried out using ultrasonic slurry sampling electrothermal atomic absorption spectrometry (ETAAS), which allowed rapid determination of copper and nickel in small amounts of the samples. The metal concentration in the soil was in the range ≈ 40 μg/g–4% (w/w) for Cu and ≈ 60 μg/g–0.3% (w/w) for Ni. The concentration ranges of the elements in the plant parts were ≈ 6 μg/g–0.2% Cu and ≈ 3–210 μg/g Ni. At high soil metal content (greater than 2.5% (w/w) Cu and 0.1% (w/w) Ni), high levels of both nickel and copper were found in the shoots (leaves and flowers) of H. candolleanum. Concentrations as high as 0.2% (w/w) Cu were found in the leaves and flowers of H. candolleanum, indicating hyperaccumulation for this plant. For B. diversispina, the metal concentrations did not exceed 100 μg/g for any plant part, for both metals. Both plant species tolerate high concentrations of metals and should therefore be categorized as metallophytes. In order to evaluate metal translocation from the soil to the shoots, metal leaf transfer coefficients (ratio of metal concentration in the leaf to metal concentration in the soil) were calculated. Our data suggest that the two plant species have different metal uptake and transport mechanisms, which needs to be investigated further. The present work also suggests that H. candolleanum may be used as a copper/nickel indicator plant in biogeochemical or biogeobotanical prospecting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.