Abstract

A slurry sampling electrothermal atomic absorption spectrometry (ETAAS) method for the determination of Al, Cr, Cu, Fe, K, Li, Mg, Mn and Na at trace and ultratrace level in high purity quartz samples has been developed. The influence of atomization temperature, internal gas flow during atomization and carbide modification of the graphite tube on the background absorption has been studied. Simple quantification via calibration curves, recorded with aqueous standards, is possible for all elements except Al. The performance and the accuracy of the slurry sampling technique are compared to those of the analysis of hydrofluoric acid digests. With both methods, the blanks could be substantially reduced by minimization of sample handling. Because of essentially higher applicable sample portions, the solution technique provides lower limits of detection for all elements excluding Al, Na and K. For the slurry sampling technique, the achievable limits of detection are in the range of 2 (Mg) to 500 (Fe) ng g −1 and for the solution technique, they are between 0.4 (Mg) and 500 (Al) ng g −1. Thus, both developed methods are well suited for ultratrace analysis of high purity quartz for microelectronic applications. The results obtained by these two ETAAS techniques are compared with those of independent methods including neutron activation analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.