Abstract
This paper describes an exploratory study carried out to determine critical control points and possible risks in hatcheries and broiler farms. The study was based in the identification of the potential hazards existing in broiler production, from the hatchery to the broiler farm, identifying critical control points and defining critical limits. The following rooms were analyzed in the hatchery: egg cold storage, pre-heating, incubator, and hatcher rooms. Two broiler houses were studied in two different farms. The following data were collected in the hatchery and broiler houses: temperature (ºC) and relative humidity (%), air velocity (m s-1), ammonia levels, and light intensity (lx). In the broiler house study, a questionnaire using information of the Broiler Production Good Practices (BPGP) manual was applied, and workers were interviewed. Risk analysis matrices were build to determine Critical Control Points (CCP). After data collection, Statistical Process Control (SPC) was applied through the analysis of the Process Capacity Index, using the software program Minitab15®. Environmental temperature and relative humidity were the critical points identified in the hatchery and in both farms. The classes determined as critical control points in the broiler houses were poultry litter, feeding, drinking water, workers' hygiene and health, management and biosecurity, norms and legislation, facilities, and activity planning. It was concluded that CCP analysis, associated with SPC control tools and guidelines of good production practices, may contribute to improve quality control in poultry production.
Highlights
Brazilian broiler meat production has grown and developed in the last few years, and has shown expressive results such as reduction of production cost, better product quality, increasing presence in the international market, increasing domestic consumption per capita, and good production performance as compared to other meat industries (Pinotti & Paulillo, 2006).Cesari & Nascimento (1995) mentioned that critical points must be prevented, eliminated, or reduced to acceptable levels, which means they need to be controlled
This paper describes an exploratory study carried out to determine critical control points and possible risks in hatcheries and broiler farms
It was concluded that Critical Control Points (CCP) analysis, associated with Statistical Process Control (SPC) control tools and guidelines of good production practices, may contribute to improve quality control in poultry production
Summary
Brazilian broiler meat production has grown and developed in the last few years, and has shown expressive results such as reduction of production cost, better product quality, increasing presence in the international market, increasing domestic consumption per capita, and good production performance as compared to other meat industries (Pinotti & Paulillo, 2006).Cesari & Nascimento (1995) mentioned that critical points must be prevented, eliminated, or reduced to acceptable levels, which means they need to be controlled. Brazilian broiler meat production has grown and developed in the last few years, and has shown expressive results such as reduction of production cost, better product quality, increasing presence in the international market, increasing domestic consumption per capita, and good production performance as compared to other meat industries (Pinotti & Paulillo, 2006). The control of identified biological, chemical, and physical hazards is important from raw material supply up to product delivery to the consumers. The different links of the chain, such as raw materials, storage, transport, bird management, and pre-slaughter management, must be monitored and controlled for food quality and safety programs. Poultry production in Brazil is one of the animal production chains with the highest level of coordination, which allows it to be very competitive in the international market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.