Abstract

ObjectiveTo explore the clinical utility of detecting chromosome copy number variants (CNVs) in the fetus by noninvasive prenatal testing (NIPT) using the low-pass whole-genome sequencing. MethodsEight hundred and seventy-three singleton pregnancies with chromosomal microarray analysis (CMA) available between January 2017 to December 2019 and stored enough plasma sample for NIPT testing were included in this study. The CMA results show that forty-eight pregnancies with CNVs and eight hundred and twenty-five pregnancies are normal. Each pregnancy's plasma sample was blindly tested with NIPT at a depth of 0.51-1.19x for CNVs detection. The performance of the NIPT method for CNVs detection compared with the CMA method is evaluated. ResultsA total of fifty-two CNVs ranging from 0.1–47.3 Mb identified in forty-eight samples were identified by NIPT, of which thirty-four CNVs were consistent with CMA results. Additionally, eighteen CNVs were missed by NIPT. The overall sensitivity and specificity for the detection of CNVs were 65.38% (95% CI: 51.76%-76.89%) and 97.45% (95% CI: 96.12%-98.35%), respectively. However, for the detection of CNVs larger than 2 Mb and CNVs less than 2Mb, the sensitivities were 81.58% (95% CI: 66.27%-91.09%) and 21.43% (95% CI: 6.84%-48.32%), respectively. ConclusionOur study demonstrated that the NIPT might be an alternative method for screening CNVs comparable with other studies. However, CNVs less than 2Mb in length shows poor sensitivity by NIPT. Noninvasive CNVs detection based on the NIPT method still needs more clinical validation studies and technical improvement to achieve clinically acceptable accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call