Abstract

Cambium drives the lateral growth of stems and roots, contributing to diverse plant growth forms. The root crop is one of the outstanding examples of the cambium-driven growth. To understand its molecular basis, we used radish to generate a compendium of root-tissue- and stage-specific transcriptomes from two contrasting inbred lines during root growth. Expression patterns of key cambium regulators and hormone signaling components were validated. Clustering and gene ontology (GO) enrichment analyses of radish datasets followed by a comparative analysis against the newly established Arabidopsis early cambium data revealed evolutionary conserved stress-response transcription factors that may intimately control the cambium. Indeed, an invivo network consisting of selected stress-response and cambium regulators indicated ERF-1 as a potential key checkpoint of cambial activities, explaining how cambium-driven growth is altered in response to environmental changes. The findings here provide valuable information about dynamic gene expression changes during cambium-driven root growth and have implications with regard to future engineering schemes, leading to better crop yields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call