Abstract
In the paper, a method for identifying the mechanical properties of the in-situ component materials in carbon fiber reinforced silicon carbide ceramic matrix composites based on the macro mechanical test data is proposed. Firstly, the computation efficiency of considering damage behavior in the meso-mechanial model is improved through the self-consistent clustering analysis. Subsequently, sensitivity analysis is introduced in the parameter identification based on the Bayesian network to reduce the number of parameters to be identified simultaneously, thereby alleviating the ill-posedness of the inverse problem. Numerical and experimental cases were conducted to validate the proposed method. The maximum error of parameter identification is 6.0 % and the prediction error for strength is only 1.7 % in the numerical case with 5 % Gaussian noise. In the experimental case, the stress–strain curve calculated using the identified results shows good agreement with the experimental data. The prediction error for strength is only 2.2 %, while the maximum deviation between the identified results and the reference value in the literature can be up to 50 %, indicating the importance of obtaining the properties of component materials in-situ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.