Abstract

Although available literature indicates that the incidence of dementia in the epilepsy population and the risk of seizures in the Alzheimer's disease (AD) population are high, the specific genetic risk factors and the interaction mechanism are unclear, rendering rational genetic interpretation rather challenging. Our work aims to identify the common core ion channel genes in epilepsy and AD. In this study, we first integrated gene expression omnibus datasets (GSE48350 and GSE6834) on AD and epilepsy to identify differentially expressed genes (DEGs), performing Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. The related protein-protein interaction (PPI) network was constructed for DEGs, and the hub gene was evaluated. A total of 2800 and 35 genes were identified in GSE48350 and GSE6834, and 12 DEGs were significantly differentially expressed between the datasets. KEGG pathway analysis showed that DEGs were primarily enriched in glutamatergic synapse and dopaminergic synapse pathways. SCN2A, GRIA1, and KCNJ9 were the hub genes with high connectivity. The findings suggest that the three genes, SCN2A, GRIA1, and KCNJ9, may serve as potential targets for treating AD comorbid with epilepsy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call