Abstract

The serotonin(1A) receptor is a representative member of the G protein-coupled receptor (GPCR) superfamily and serves as an important drug target in the development of therapeutic agents for neuropsychiatric disorders. Previous work has shown the requirement of membrane cholesterol in the organization, dynamics, and function of the serotonin(1A) receptor. We show here that membrane cholesterol binds preferentially to certain sites on the serotonin(1A) receptor by performing multiple, long time scale MARTINI coarse-grain molecular dynamics simulations. Interestingly, our results identify the highly conserved cholesterol recognition/interaction amino acid consensus (CRAC) motif on transmembrane helix V as one of the sites with high cholesterol occupancy, thereby confirming its role as a putative cholesterol binding motif. These results represent the first direct evidence for membrane cholesterol binding to specific sites on the serotonin(1A) receptor and represent an important step in our overall understanding of GPCR function in health and disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.