Abstract

Serotonin(1A) receptors are important neurotransmitter receptors and belong to the superfamily of G-protein coupled receptors (GPCRs). Although it is an important drug target, the crystal structure of the serotonin(1A) receptor has not been solved yet. Earlier homology models of the serotonin(1A) receptor were generated using rhodopsin as a template. We have used two recent crystal structures of the human β(2)-adrenergic receptor, one of which shows specific cholesterol binding site(s), as templates to model the human serotonin(1A) receptor. Since the sequence similarity between the serotonin(1A) receptor and β(2)-adrenergic receptor is considerably higher than the similarity between the serotonin(1A) receptor and rhodopsin, our model is more reliable. Based on these templates, we generated models of the serotonin(1A) receptor in the absence and presence of cholesterol. The receptor model appears more compact in the presence of cholesterol. We validated the stability of 'compactness' using coarse-grain MD simulation. Importantly, all ligands exhibit higher binding energies when docked to the receptor in the presence of cholesterol, thereby implying that membrane cholesterol facilitates ligand binding to the serotonin(1A) receptor. To the best of our knowledge, this is one of the first reports in which lipid-specific receptor conformations have been modeled by homology modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.