Abstract
Osteosarcoma (OS) is the pretty common primary cancer of the bone among the malignancies in adolescents. A single molecular component or a limited number of molecules is insufficient as a predictive biomarker of OS progression. Hence, it is necessary to find novel network biomarkers to improve the prediction and therapeutic effect for OS. Here, we identified 230 DE-miRNAs and 821 DE-mRNAs through two miRNA expression-profiling datasets and three mRNA expression-profiling datasets. We found that hsa-miR-494 is closely linked with the survival of OS patients. In addition, we analyzed GO and KEGG enrichment for targets of hsa-miR-494-5p and hsa-miR-494-3p through R programming. And five mRNAs were predicted as common targets of hsa-miR-494-5p and hsa-miR-494-3p. We further revealed that upregulated TRPS1 was strongly correlated with poor outcomes in OS patients through the survival analysis based on the TARGET database. The qRT-PCR study verified that the expression of hsa-miR-494-5p and hsa-miR-494-3p was declined considerably, while TRPS1 was notably raised in OS cells when compared to the osteoblasts. Thus, we generated a new regulatory subnetwork of key miRNAs and target mRNAs using Cytoscape software. These results indicate that the novel miRNA-mRNA subnetwork composed of hsa-miR-494-5p, hsa-miR-494-3p, and TRPS1 might be a characteristic molecule for assessing the prognostic value of OS patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and mathematical methods in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.