Abstract

Despite bitterness being a common flavor attribute of aged cheese linked to casein-derived peptides, excessive bitterness is a sensory flaw that can lead to consumer rejection and economic loss for creameries. Our research employs a unique approach to identify bitter peptides in cheese samples using crossflow filtration-based fractionation, mass spectrometry-based peptidomics, statistics and sensory analysis. Applying peptidomics and statistical screening tools, rather than traditional chemical separation techniques, to identify bitter peptides allows for screening the whole peptide profile. Five peptides—YPFPGP (β-casein [60–65]), YPFPGPIPN (βA2-casein [60–68]), LSQSKVLPVPQKAVPYPQRDMPIQA (β-casein [165–189]), YPFPGPIHNS (βA1-casein [60–69]) and its serine phosphorylated version YPFPGPIHN[S] (βA1-casein [60–69])— demonstrated high levels of bitterness with mean bitterness intensity values above 7 on a 15-point scale. In the future, this data can be combined with the microbial and protease profile of the Cheddar samples to help understand how these factors contribute to bitter taste development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.