Abstract
Composting is a process of microbial degradation of organic waste and is commonly applied for waste management. This is a slow process and requires a lot of land and human resources. The present study investigated mechanical augmentation with required microbial culture for composting municipal solid waste (MSW). Thirty isolates were subjected to 16S rDNA PCR amplification and gene sequencing. The isolates' sequencing from the compost samples was processed on BLASTn. Fourteen strains were identified for further experiments. The results divulge that Empedobacter (04), Bacillus (02), Proteus (02), Lactiplantibacillus (01), Klebsiella (01), Citrobacter (01), Brevibacillus (01), E. coli (01) and one unidentified strain were growing during composting. Eleven combinations of bacterial consortium and respective additives were applied for the organic waste decomposition in the next stage, resulting in varied completion periods ranging from 3 to 14days. Two combinations were completed within 3days, which are considered ideal combinations for composting. The microbial consortium was significantly diverse, which is a reason for rapid biodegradation. The present study reveals that the technology will be highly feasible for municipal solid waste management in tropical/subtropical countries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have