Abstract

The application of Auger electron spectroscopy to sharp topographies, such as microfabricated field emitters, leads to two analysis artifacts; edge enhancement and shadowing. As a result, the detected Auger electron peak heights can change by more than 100%; potentially giving rise to the wrong conclusions being drawn about the elemental surface concentrations. A single-pass cylindrical mirror analyzer has been modified for use in the rapid identification of such artifacts. The modifications comprises a multichannel electron detector divided into six segments spanning 360° of azimuth and an electrostatic lens that passes electrons to the electron detector along the same exit trajectory independently of their energy. Preliminary results of the use of the instrument in the analysis of a tungsten coated volcano-shaped silicon field-emitter structure are reported. The analysis simultaneously shows two different edge artifacts in the six spectra due to edge enhancement and shadowing. The experiment demonstrated here shows a rapid method for identifying these artifacts and avoids the need to repeat the experiment using a different angle of incidence, as was conventionally the case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.