Abstract

ARMAX models constitute an excellent compromise between performance and complexity and can model in an effective way the presence of disturbances acting on the process state. These models, however, do not take into account the observation errors on the output of the process to be identified and this can be particularly important in applications like filtering and fault diagnosis. This paper concerns extended ARMAX models that consider also the presence of additive white noise on the output observation and describes an approach for their identification that takes advantage of both the errors–in–variables framework and the instrumental variable properties. The paper reports also the results of Monte Carlo simulations that underline the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.