Abstract
AbstractARMAX models are widely used in identification and are a standard tool in control engineering for both system description and control design. These models, however, can be non realistic in many practical contexts because of the presence of measurement errors that play an important role in applications like fault diagnosis and optimal filtering. ARMAX models can be enhanced by introducing also additive error terms on the input and output observations. This scheme, that can be denoted as “ARMAX + noise”, belongs to the errors–in–variables family and allows taking into account the presence of both process disturbances and measurement noise. This paper proposes a three-step procedure for identifying “ARMAX + noise” processes. The first step of the identification algorithm in based on an iterative search procedure while the second and third ones rely on simple least–squares formulas. The paper reports also the results of some Monte Carlo simulations that underline the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.