Abstract
Factor VIIa-tissue factor complex (fVIIa/TF) and factor XIa (fXIa) play important roles in the initiation and amplification of coagulation, respectively. They may be good targets for the development of novel anticoagulants to treat and prevent thromboembolic disease. In this study, we cloned, expressed and identified a novel anticoagulant peptide, AcaNAP10, from the blood-feeding nematode Ancylostoma caninum. AcaNAP10 showed potent anticoagulant activity and doubled the activated partial thromboplastin and prothrombin times at estimated concentrations of 92.9 nM and 28.8 nM, respectively. AcaNAP10 demonstrated distinct mechanisms of action compared with known anticoagulants. It inhibited fXIa and fVIIa/TF with IC 50 values of 25.76 ± 1.06 nM and 123.9 ± 1.71 nM, respectively. This is the first report on an anticoagulant that can inhibit both fXIa and fVIIa/TF. This anticoagulant peptide may be an alternative molecule for the development of novel anticoagulants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have