Abstract
The amacrine neurons in the mammalian retina comprise a large variety of cell types with distinct properties and functions that serve to integrate and modulate signals presented to output neurons. The majority of them use either glycine or GABA as inhibitory neurotransmitters and express the glycine transporter 1 (GlyT1) or glutamic acid decarboxylase (GAD67) and GABA transporters (GAT1 and GAT3), as a glycinergic or GABAergic marker respectively. We report here a novel subpopulation of amacrine neurons expressing both, GABAergic and glycinergic markers, in retinas from wild-type C57BL/6J mice and two transgenic lines. In retinal sections from the transgenic line expressing eGFP under the control of the glycine transporter 2, eGFP expression was exclusively found in cell bodies and dendrites of inhibitory amacrine neurons, identified for their immunoreactivity to syntaxin 1A. All of the glycinergic and a large portion of the GABAergic amacrine neurons contained eGFP; of these, 8-10% of GlyT1 positive neurons were also labeled either with GAD67, GAT1 or GAT3. These findings were confirmed in retinas from a wild-type and a mouse line expressing eGFP under the GAD67 promoter and two different anti-GlyT1 antibodies, showing the presence of a subpopulation with a dual phenotype. Moreover, eGFP-positive dendrites on both mouse lines were found juxtaposed to GlyR subunits and the scaffold protein gephyrin in several areas of the inner plexiform layer, demonstrating the glycinergic character of these neurons. This dual phenotype was also demonstrated in primary retina cultures, in which isolated neurons were positive for GlyT1 and GAD67 or GAT1/3. Altogether, these data provide compelling evidence of a subpopulation of dual inhibitory, glycinergic/GABAergic amacrine neurons. The co-release of both neurotransmitters may serve to strengthen the inhibition on ganglion cells under synaptic hyperexcitability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.