Abstract
The firing pattern of neurons is shaped by the convergence of excitation and inhibition, each with finely tuned magnitude and duration. In an auditory brainstem nucleus, glycinergic inhibition features fast decay kinetics, the mechanism of which is unknown. By applying glycine to native or recombinant glycine receptors, we show that response decay times are accelerated by addition of GABA, a weak partial agonist of glycine receptors. Systematic variation in agonist exposure time revealed that fast synaptic time course may be achieved with submillisecond exposures to mixtures of glycine and GABA at physiological concentrations. Accordingly, presynaptic terminals generally contained both transmitters, and depleting terminals of GABA slowed glycinergic synaptic currents. Thus, coreleased GABA accelerates glycinergic transmission by acting directly on glycine receptors, narrowing the time window for effective inhibition. Packaging both weak and strong agonists in vesicles may be a general means by which presynaptic neurons regulate the duration of postsynaptic responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.