Abstract
Incubation of different dilutions of alligator serum with sheep red blood cells (SRBCs) that had not been sensitized with antibodies resulted in concentration-dependent hemolytic activity. This hemolytic activity was not affected by the presence of ammonium hydroxide and methylamine, known inactivators of the classical complement cascade. However, the hemolytic activities were inhibited by EDTA and salicylaldoxime, indicating that the alternate pathway is primarily responsible for these activities. Immunofixation of electrophoretically-resolved alligator serum proteins with antihuman C3 polyclonal antibodies resulted in detection of a protein antigenically similar to human C3 in alligator serum. SDS-PAGE, followed by Western blot analysis, revealed the presence of two alligator serum proteins with nearly identical molecular weights as human C3α and C3β. SRBC hemolysis and antibacterial activity by alligator serum was significantly reduced in the presence of antihuman C3 antibodies. The hemolytic effect of alligator serum was shown to occur rapidly, with significant activity within 5 min and maximal activity occurring at 15 min. SRBC hemolysis was also temperature-dependent, with reduced activity below 15 °C and above 30 °C. These data suggest that the antibiotic properties of alligator serum are partially due to the presence of a complement-facilitated humoral immune response analogous to that described in mammalian systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.