Abstract
Anomalous DNA (aDNA) in prokaryotic genomes, identified by its aberrant nucleotide composition, generally represents horizontally acquired DNA. Previous studies showed that frequent DNA transfer occurs between commensal Neisseriae and Neisseria meningitidis. Currently, it is unknown whether aDNA regions are also transferred between these species. The genome of Neisseria lactamica strain 892586 was assessed by a strategy that enables the selective isolation of aDNA, using endonucleases with recognition sites that are overrepresented in aDNA. Of eight regions with aDNA, five displayed similarity to virulence-associated meningococcal sequences. Of three aDNA fragments with limited or no similarity to neisserial sequences, one encodes a novel putative autotransporter/adhesin. The remaining two fragments are adjacent in the N. lactamica genome, and encode a novel putative ATPase/subtilisin-like protease operon. A similar operon is present in the genomes of different respiratory tract pathogens. The identification of aDNA from N. lactamica with similarity to meningococcal aDNA shows that genetic exchange between the Neisseriae is not limited to the neisserial core genome. The discovery of aDNA in N. lactamica similar to a locus in other pathogens substantially expands the neisserial gene pool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.