Abstract

In this paper, we study an inverse problem of identifying a time-dependent term of an unknown source for a time fractional diffusion equation using nonlocal measurement data. Firstly, we establish the conditional stability for this inverse problem. Then two regularization methods are proposed to for reconstructing the time-dependent source term from noisy measurements. The first method is an integral equation method which formulates the inverse source problem into an integral equation of the second kind; and a prior convergence rate of regularized solutions is derived with a suitable choice strategy of regularization parameters. The second method is a standard Tikhonov regularization method and formulates the inverse source problem as a minimizing problem of the Tikhonov functional. Based on the superposition principle and the technique of finite-element interpolation, a numerical scheme is proposed to implement the second regularization method. One- and two-dimensional examples are carried out to verify efficiency and stability of the second regularization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.