Abstract

Calcific aortic valve disease (CAVD) is a significant cause of illness and death worldwide. Identification of early predictive markers could help optimize patient management. RNA-sequencing was carried out on human fetal aortic valves at gestational weeks 9, 13, and 22 and on a case-control study with adult noncalcified and calcified bicuspid and tricuspid aortic valves. In dimension reduction and clustering analyses, diseased valves tended to cluster with fetal valves at week 9 rather than normal adult valves, suggesting that part of the disease program might be due to reiterated developmental processes. The analysis of groups of coregulated genes revealed predominant immune-metabolic signatures, including innate and adaptive immune responses involving lymphocyte T-cell metabolic adaptation. Cytokine and chemokine signaling, cell migration, and proliferation were all increased in CAVD, whereas oxidative phosphorylation and protein translation were decreased. Discrete immune-metabolic gene signatures were present at fetal stages and increased in adult controls, suggesting that these processes intensify throughout life and heighten in disease. Cellular stress response and neurodegeneration gene signatures were aberrantly expressed in CAVD, pointing to a mechanistic link between chronic inflammation and biological aging. Comparison of the valve RNA-sequencing data set with a case-control study of whole blood transcriptomes from asymptomatic individuals with early aortic valve calcification identified a highly predictive gene signature of CAVD and of moderate aortic valve calcification in overtly healthy individuals. These data deepen and broaden our understanding of the molecular basis of CAVD and identify a peripheral blood gene signature for the early detection of aortic valve calcification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.