Abstract

The fungus, Batrachochytrium dendrobatidis, is the causative agent of chytridiomycosis and a leading cause of global decline in amphibian populations. The first stages of chytridiomycosis include: inflammation, hyperkeratosis, lethargy, loss of righting reflex, and disruption of internal electrolyte levels leading to eventual death of the host. Previous work indicates that B. dendrobatidis can produce immunomodulatory compounds and other secreted molecules that regulate the growth of the fungus. In this study, filtrates of the fungus grown in media and water were subjected to ultra-performance liquid chromatography-mass spectrometry and analyzed using Compound Discoverer 3.0. Identification of cyclo(phenylalanyl-prolyl), chitobiose, and S-adenosylmethionine were verified by their retention times and fragmentation patterns from B. dendrobatidis supernatants. Previous studies have analyzed the effects of B. dendrobatidis on amphibian models, in vitro, or in cell culture. We studied the effects of live B. dendrobatidis cells, spent culture filtrates containing secreted metabolites, and cyclo(pheylalanyl-prolyl) on wax moth larvae (Galleria mellonella). Concentrated filtrates caused melanization within 24h, while live B. dendrobatidis caused melanization within 48h. Here we show B. dendrobatidis produces secreted metabolites previously unreported. The impacts of these chemicals were tested on an alternate non-amphibian model system that has been used for other fungi to study pathogenicity traits in this fungus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.