Abstract
BackgroundIron (Fe) is the most limiting micronutrient element for crop production in alkaline soils. A number of transcription factors involved in regulating Fe uptake from soil and transport in plants have been identified. Analysis of transcriptome data from Oryza sativa grown under limiting Fe conditions reveals that transcript abundances of several genes encoding transcription factors are altered by Fe availability. These transcription factors are putative regulators of Fe deficiency responses.ResultsTranscript abundance of one nuclear located basic helix-loop-helix family transcription factor, OsIRO3, is up-regulated from 25- to 90-fold under Fe deficiency in both root and shoot respectively. The expression of OsIRO3 is specifically induced by Fe deficiency, and not by other micronutrient deficiencies. Transgenic rice plants over-expressing OsIRO3 were hypersensitive to Fe deficiency, indicating that the Fe deficiency response was compromised. Furthermore, the Fe concentration in shoots of transgenic rice plants over-expressing OsIRO3 was less than that in wild-type plants. Analysis of the transcript abundances of genes normally induced by Fe deficiency in OsIRO3 over-expressing plants indicated their induction was markedly suppressed.ConclusionA novel Fe regulated bHLH transcription factor (OsIRO3) that plays an important role for Fe homeostasis in rice was identified. The inhibitory effect of OsIRO3 over-expression on Fe deficiency response gene expression combined with hypersensitivity of OsIRO3 over-expression lines to low Fe suggest that OsIRO3 is a negative regulator of the Fe deficiency response in rice.
Highlights
Iron (Fe) is the most limiting micronutrient element for crop production in alkaline soils
OsIRO3 is induced by Fe deficiency Previous studies in our laboratory identified several transcription factors whose expression was induced by
To determine whether the induction of OsIRO3 is specific to Fe deficiency or whether this induction could be observed under deficiency of other minerals, the transcript abundance of OsIRO3 was determined from plants grown under a variety of different mineral element deficient conditions
Summary
Iron (Fe) is the most limiting micronutrient element for crop production in alkaline soils. Analysis of transcriptome data from Oryza sativa grown under limiting Fe conditions reveals that transcript abundances of several genes encoding transcription factors are altered by Fe availability. These transcription factors are putative regulators of Fe deficiency responses. Iron (Fe) is an essential micronutrient for plant growth and production This is due to the fact that it is an essential co-factor in a variety of enzymes that play critical roles in photosynthesis, respiration and nitrogen fixation [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.