Abstract

BackgroundHaemosporidian parasites are transmitted by dipteran blood-sucking insects but certain vectors remain unidentified for the great majority of described species. Sensitive PCR-based methods are often used for the detection of haemosporidian infection in wild-caught insects. However, this approach alone cannot distinguish between different sporogonic stages and thus is insufficient to demonstrate that the parasites produce the infective stage (sporozoite), which is essential for transmission. To prove that PCR-positive insects could act as vectors, the record of sporozoites is needed. We developed a methodology for the determination of natural vectors of avian Haemoproteus species and other haemosporidians. The essence of this approach is to apply PCR-based and microscopic diagnostic tools in parallel for sporozoite detection in insects.MethodsCulicoides biting midges transmit avian Haemoproteus parasites, but certain insect species, which are involved in transmission, remain insufficiently investigated. Biting midges were collected in the wild and identified; parous females were dissected and preparations of thorax content containing salivary glands were prepared. Remnants of the dissected midges were screened using PCR-based methods. Only thorax preparations of PCR-positive biting midges were examined microscopically.ResultsIn total, 460 parous females belonging to 15 species were collected and dissected. DNA of haemosporidians was detected in 32 (7%) of dissected insects belonging to 7 species. Of the thorax samples PCR-positive for Haemoproteus parasites, two preparations were microscopically positive for sporozoites. Both biting midges were Culicoides kibunensis. Haemoproteus pallidus (hPFC1) was identified, indicating that transmission of this infection occurs at the study site. It was proved that seven species of biting midges take bird blood meals naturally in the wild.ConclusionsCulicoides kibunensis is a new vector species of avian haemoproteids and is a natural vector of H. pallidus. Numerous studies have identified vectors of Haemoproteus parasites experimentally; however, this is the first direct identification of a natural vector of Haemoproteus infection in the Old World. We suggest using the described methodology for vector research of Haemoproteus and other haemosporidians in the wild.

Highlights

  • Haemosporidian parasites are transmitted by dipteran blood-sucking insects but certain vectors remain unidentified for the great majority of described species

  • The most abundant species were Culicoides pictipennis (41.3% of all Culicoides individuals dissected in May), Culicoides kibunensis (30.8% of all Culicoides insects dissected in June), Culicoides obsoletus and Culicoides scoticus

  • The highest abundance of Culicoides midges was reported from the end of May until the end of June, and that coincided with the highest prevalence of infection with avian haemosporidian parasites in biting midges (Fig. 1)

Read more

Summary

Introduction

Haemosporidian parasites are transmitted by dipteran blood-sucking insects but certain vectors remain unidentified for the great majority of described species. Sensitive PCR-based methods are often used for the detection of haemosporidian infection in wild-caught insects This approach alone cannot distinguish between different sporogonic stages and is insufficient to demonstrate that the parasites produce the infective stage (sporozoite), which is essential for transmission. We developed a methodology for the determination of natural vectors of avian Haemoproteus species and other haemosporidians The essence of this approach is to apply PCR-based and microscopic diagnostic tools in parallel for sporozoite detection in insects. Representatives of different genera of avian haemosporidians use different groups of dipteran insects for transmission: avian Plasmodium parasites are transmitted by mosquitoes (Culicidae) [2, 8], Haemoproteus spp. by louse flies (Hippoboscidae) and biting midges (Culicoides, Ceratopogonidae) [9, 10], and Leucocytozoon species mainly by black flies (Simuliidae) [11, 12]. The majority of current studies focus on the interaction between haemosporidians and vertebrate hosts, but vector species and the host-parasite interaction during sporogonic development remains insufficiently investigated, in wildlife [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call