Abstract

The two-electron oxidation of tryptophan tryptophylquinone (TTQ) in substrate-reduced methylamine dehydrogenase (MADH) by amicyanin is known to proceed via an N-semiquinone intermediate in which the substrate-derived amino group remains covalently attached to TTQ [Bishop, G. R., and Davidson, V. L. (1996) Biochemistry 35, 8948-8954]. A new method for the stoichiometric formation of the N-semiquinone in vitro has allowed the study of the oxidation of the N-semiquinone by amicyanin in greater detail than was previously possible. Conversion of N-semiquinone TTQ to the quinone requires two biochemical events, electron transfer to amicyanin and release of ammonia from TTQ. Using rapid-scanning stopped-flow spectroscopy, it is shown that this occurs by a sequential mechanism in which oxidation to an imine (N-quinone) precedes hydrolysis by water and ammonia release. Under certain reaction conditions, the N-quinone intermediate accumulates prior to the relatively slow hydrolysis step. Correlation of these transient kinetic data with steady-state kinetic data indicates that the slow hydrolysis of the N-quinone by water does not occur in the steady state. In the presence of excess substrate, the next methylamine molecule initiates a nucleophilic attack of the N-quinone TTQ, causing release of ammonia that is concomitant with the formation of the next enzyme-substrate cofactor adduct. In light of these results, the usually accepted steady-state reaction mechanism of MADH is revised and clarified to indicate that reactions of the quinone form of TTQ are side reactions of the normal catalytic pathway. The relevance of these conclusions to the reaction mechanisms of other enzymes with carbonyl cofactors, the reactions of which proceed via Schiff base intermediates, is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.