Abstract

Two crystals forms of bovine pancreatic trypsin inhibitor are produced between pH 8.39 and 10.13 when crystals are grown at room temperature from solutions of 1.5 M potassium phosphate. Lower pH values favor the form II crystals, whereas higher pH values favor the form III. The transition from one crystal form to the other occurs at pH 9.35. We examined the crystal lattice contacts in both crystal forms and identified an unusual interaction we believe explains these observations. Spanning the crystallographic 2-fold axis in form III crystals, the Lys 41 side-chain amino nitrogens from 2 symmetry-related molecules are only 2.72 A apart, implying they are hydrogen bonded to one another. In form II crystals, the Lys 41 side-chain amino group is protonated and forms a salt bridge with a solvent-derived phosphate group. For the Lys 41 side-chain amino groups to hydrogen bond in form III crystals, at least 1 member of the pair must be deprotonated. The transition that occurs at pH 9.35 marks the pKa for deprotonation. In solution, the pKa for the Lys 41 side chain is around 10.8. The pKa for one of the interacting Lys 41 side chains in form III crystals is therefore shifted downward by about 1.5 pH units. The energy for lowering the pKa value comes from the many additional intermolecular hydrogen bonds that are present in form III crystals: 19 compared to only 8 in form II crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.