Abstract
In earlier work, a driver model incorporating sensory dynamics was identified from driving simulator experiments involving random disturbances, random target paths and linear vehicle dynamics. In the present paper, the driver model and experiments are extended to include transient disturbances, discrete target paths and nonlinear vehicle dynamics. The predictions of the model are compared with measurements from the experiments. Simulator motion is found to have a significant beneficial effect on drivers' responses, giving faster driver reaction times and more successful disturbance rejection and path following. The driver model predicts the measured responses well. The model suggests that drivers are unable to develop an accurate internal model of motion cueing filters, perceiving phase and gain distortions introduced by filtering as disturbances. Drivers are found able to account for the time-varying operating point of a nonlinear vehicle. The driver model is also able to match the behaviour of experienced drivers near the friction limit of the tyres, however, further work is necessary to understand how an inaccurate internal model impedes the performance of less experienced drivers. The findings contribute new knowledge to the fields of driver simulation and motion cueing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.