Abstract

In this paper, we demonstrate that the antimicrobial activity of L. plantarum PBS067 strain against antagonist microorganisms was mediated by the production of a bacteriocin-like compound secreted at the stationary phase of the growth. The novel bacteriocin-like compound, designed plantaricin P1053, was identified by using sorption–desorption method, butanol extraction and SEC-HPLC. The molecular mass of plantaricin P1053 was shown to be 1053 Da by ESI-MS analysis. Plantaricin P1053 exhibited a broad-spectrum antimicrobial activity against Gram-positive bacteria as S. aureus and Gram-negative bacteria as E. coli. In addition to the antimicrobial activity, the isolated bacteriocin-like compound showed effects on normal and cancerogenic epithelial intestinal cell lines through an enhancing of viability of healthy cells and a proliferation reduction of cancer cells. Moreover, in this paper we demonstrate that the isolated bacteriocin-like compound acts on healthy cells through the epidermal growth factor receptor (EGFR) pathways. In conclusion, plantaricin P1053 isolated from L. plantarum PBS067 strain could represent one of the first multifunctional bacteriocin-like compound acting on human epithelial intestinal cells.

Highlights

  • Probiotics are recognized as live microorganisms that confer a health benefit to the host when administered in adequate amounts (FAO/WHO 2001)

  • The aim of this work was to demonstrate that the antimicrobial activity exhibited from L. plantarum strain PBS067 against antagonist microorganisms was mediated by a bacteriocin-like compound, produced and secreted in the medium during the growth of the strain

  • Identification of antimicrobial activity of L. plantarum strain PBS067 Lactobacillus plantarum strain PBS067 was grown until reaching the stationary phase of the cells and the cell free supernatant (CFS) was used in the antimicrobial activity through the well diffusion agar assay

Read more

Summary

Introduction

Probiotics are recognized as live microorganisms that confer a health benefit to the host when administered in adequate amounts (FAO/WHO 2001). One of the four sub-groups is the Class IIA that contains bacteriocins known as “pediocin-like” peptides whose synthesis requires four genes encoding proteins regulated by a quorum sensing mechanism (Da Silva et al 2014; Diep et al 2009). These proteins and peptides are known for their antimicrobial properties against some potential pathogens like Escherichia coli, Staphylococcus aureus and Bacillus spp. (Ahmad et al 2017; Zhao et al 2016) Many of these bacteriocins are produced from L. plantarum strains. The bacteriocins isolated from these strains have the peculiarity to have a very low molecular weight around 1000–3000 Da

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call